
Probabilistic Modeling of Charging Profiles in
Low Voltage Networks
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Abstract—This paper analyzes possibilities to create deter-
ministic driving profiles from mobility survey data provided
by the German government. Main objectives are to determine
(a) the periods when the car is at home and (b) the driving
distance and thus the amount of energy necessary to fully
recharge the car. For this, the main challenge is to split the
data into trips ”departing from” and trips ”returning to” home.
This is achieved via the Monte-Carlo-Method under the key
assumption that cars are at home early in the morning. The
resulting journeys are grouped into daily driving profiles and
then travel times and annual distance driven are validated by
comparison with the original data.
Furthermore, to evaluate the grid impact, a simultaneity factor
is introduced assuming that the cars are charged immediately
after each journey. The factor describes the percentage of
electric vehicles charging at any given time. The maximum
simultaneity is found late evening with a steady decrease into
the night. An increase in charging power leads to a decrease in
simultaneity. However when considering small grids the results
become less predictable. Safety margins to keep necessary
confidence intervals have to be included.
Besides electric vehicle charging, other factors which influence
residential low voltage grids are household loads, photovoltaic
systems and heat pumps. An already existing model of the
University of Loughborough is expanded to consider inter-
dependencies between factors affecting grid loads, such as
correlations between driving profiles and household loads. The
relative timedependent impact of each technology is shown
and the importance of probabilistic modeling in small grids
is evaluated. Large safety margins or load shifting through
intelligent charging algorithms is needed to keep small grids
inside operation boundaries.

I. INTRODUCTION

Low voltage grids were originally not designed to
deal with additional loads caused by electric vehicle(EV)-
charging or heat pumps. To limit necessary grid expansion
and associated costs, the expected load due to EV-charging
should be determined as realistically as possible. Therefore
chapter II introduces a solution to create deterministic driv-
ing profiles from given survey data. A simultaneity factor is
calculated in chapter III to evaluate grid impact depending
on size, charging power and safety margins via the Monte-
Carlo-Approach. Chapter IV discusses interconnectivity be-
tween different load affecting factors to show the importance
of probabilistic modeling in low voltage grids (chapter V).
Finally a summary an conclusion is given in chapter VI.

II. DRIVING-PROFILES

The driving profiles are derived from the national mobility
survey conducted by the German ministry of transport [1]. It
contains basic information about weekday dependent driving
behavior in half-hour intervals for four main activities. The

activities include work, education, shopping and recreation.
The goal is to create deterministic driving profiles from the
given data. At first probability distributions for trips to and
from the specified activity are derived. Secondly individ-
ual trips are created and validated via the Monte-Carlo-
Approach. Finally the journeys are combined to represent
typical daily driving routines.

A. Trip-Derivation

The report data does not distinguish between trips to and
from the activity. Two methods depending on the activity
type are used to derive specific driving intervals. The first
method splits the given probabilities for the activities work
and education in half due to long activity time durations. In
the morning trips exclusively towards the activity take place,
while in the evening cars return home. At midday the travel
probabilities overlap to create a smoother transition.
For the activities ”shopping” and ”recreation” a second
method is used because the activity length is assumed to be
considerably shorter. The key assumption is that trips at 3:00
am are exclusively vehicles departing home. The number of
departing cars at 3:30 am is calculated by subtracting the
returning vehicles from the previous time interval at 3:00 am
from all driving cars. At 4:00 am, returning trips consist of a
fraction of vehicles departed at 3:00 am and those departed
half an hour later. The rest of the day follows respectively.

The amount of returning vehicles is calculated by the
activity length and probability distribution of the driving
times. The driving times can be derived from the given driv-
ing distance distribution with a correlation function between
travel distance and duration. Short trips usually have a lower
average speed than longer ones. The developed function is
shown in figure 1.

Fig. 1. Correlation function between average speed and distance traveled.

Further the activity length is assumed to be logarith-
mically distributed. At first mean value and deviation of
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the logarithmic probability distribution are unknown. The
study ”Freizeit-Monitor 2018” provides a first set point [2]
for both values. Using the previously proposed method,
the distribution of vehicles departing home is calculated.
Afterwards, the combined distribution of trips to and from
home is recreated by using the derived data via the Monte-
Carlo-Approach. In the next step, the standard deviation of
the recreated data from the original data is calculated.
The procedure is repeated with slightly different set point
values for the activity length until a minimal standard
deviation from the original data is obtained.

Figure 2 shows the original data and the final derived trips
leaving home for recreational activities on weekdays. While
in the morning almost all trips are departures form home, the
situation is reversed in late evening. Throughout the day the
distribution is almost equal for cars leaving and returning
home. It is noteworthy that the chosen method slightly
underestimates trips away from home at night because the
activity and driving distribution stay fixed throughout the
day. Usually the activity length decreases towards the end
of the day. To reduce computational complexity this effect
is not taken into consideration.

Fig. 2. Comparison of distributions for trips starting home with the original
data for recreational activities on weekdays.

B. Individual trips and validation

For each activity, the probability of cars leaving home
is known from the previous chapter. In the next step,
individual trips are created. At first the probabilities for
vehicles leaving home for each activity are combined to
an overall probability. Based on the Monte-Carlo-Approach,
the function is integrated into the corresponding distribution
function and subsequently inverted. A specific departure time
is created via a uniform random number. Figure 3 illustrates
this procedure.

Several thousand departure times at the households
are created. For the selected departure times, the activity
distribution is known and the activity type determined by a
new uniform random number. In case the chosen activity is
shopping or recreation the previously developed logarithmic
distribution is assessed via a new uniform random number
to determine the activity length. The same procedure is
used for the travel time. Simple addition of the departure
time, travel time to the activity, and the activity length leads
to the departure time back to the household.

Fig. 3. Inverted distribution density function to calculate traveling times
via a random number e.g. 0.32.

For the activities ”work” and ”education” the approach
is different. In this case a probability density function for
the starting time of the return trip is given instead of the
activity length. Plausibility dictates, that the return trip must
take place after the trip towards the activity. Additionally
very short and very long activity times are uncommon and in
some cases even prohibited by labor law. Therefore certain
travel combinations must be avoided. In order to do so a
recursive method is used. At first the total number of trips for
each activity type is determined. According to the amount of
journeys, return trips are computed without time restrictions.
This pool is used to exclusively match the trips to and from
the activity within the defined time restrictions. For each
journey leaving home a match is searched out of the pool.
In case no match can be made with any remaining return
trip in the pool, already existing matches are broken up in
case the new match is within the constrains.

Following the calculation of individual trips, these trips
are validated via the Monte-Carlo-Method. All journeys are
then transferred into a distribution showing the probabilty
of a trip at each half-hour interval of the day. Figure 4
visualizes the results in comparison to the original data set
for a Sunday. The standard deviation is 0.38%. On Saturdays
and workdays even better results can be achieved, due to a
higher proportion of work and educational activities which
differ less from the original data.

Fig. 4. Comparison of accumulated data by Monte-Carlo-Method with the
original data for all activities combined on a Sunday.

In order to determine the required arrival times back home,
the departure times of the return trips are extended by the
traveling times in a final step.
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C. Driving routines

Cars are often used more than once a day and are used
more on weekdays than on weekends. The underlying report
[1] contains information about the trip distribution depending
on the type of day and it condenses the percentage of
cars being used more than twice a day into one category.
Therefore individual daily driving profiles designed in this
paper consist of zero to three trips. A further constraint is
that trips made by one car must be consecutive. Furthermore
it is assumed that the minimal waiting time between two trips
averages to 30 minutes. The already created individual trips
are matched in a recursive manner similar to the traveling
time match for the activities work and education described
in the previous chapter. The key difference is that not all
journeys have to be matched.

The resulting driving routines are validated by comparison
with data regarding average travel distances per year and
vehicle. For each day of the week an average travel distance
can be obtained. The daily averages are then multiplied by
52 weeks for an average yearly traveled distance of 14089
km. The obtained result differs by 1.9% or 270 km from the
original data supplied by the report.

III. CHARGING IMPACT

As previously concluded, vehicles leave and return at
different time intervals. To evaluate the charging impact, a
simultaneity factor similar to the ones used for household
loads is introduced. It describes the percentage of EV’s
charging at a given time. While the chance of all vehicles
charging at the same time is relatively high for a small
amount of EV’s contained in the grid, the simultaneity factor
decreases with an increasing number of EV’s.

At first the time dependency of the simultaneity factor
is evaluated for very large grids. In networks containing an
infinite amount of electric vehicles the confidence intervals
are the same and therefore is the maximum simultaneity
factor per time step known. A network containing one
million electric vehicles is chosen to simulate this effect.
It is assumed that the vehicles charge with 3.7 or 11 kW
respectively directly after arriving back home. In case the
charging time until the next departure is insufficient to fully
charge the vehicle, the remaining energy gap is charged
after the next return home. The battery is assumed to be of
sufficient size and the grid is able to provide the necessary
energy at all times.

Figure 5 illustrates the percentage of charging vehicles on
a weekday depending on the time of day and the chosen
charging power. A higher charging power leads to a lower
simultaneity. The cars are charged faster and therefore charg-
ing overlaps tend to decrease. Still the grid impact increases
from 0.58 kW maximum impact per car for slow-charging to
0.72 kW for fast-charging. Even though the charging power
increases threefold the grid impact only increases by 24%. It
should be noted that in reality cars are not charged directly
after each trip and in consequence the simultaneity could
change due to different behavior of car owners. A more
advanced approach is discussed in a follow up paper [3].

Typical low voltage networks only contain a few electric
vehicles due to a small number of connected customers.
The general time dependency of the previously described

Fig. 5. Simultaneity factor of direct EV-charging for large grids.

simultaneity factor for very large grids stays the same, but
yields an overall increase for smaller grids.

Figure 6 illustrates the importance of confidence intervals.
In case only 10 electric vehicles are owned in a distributin
grid and charged from time to time with 11 kW, we can
observe in 99.99% of all cases, that at maximum 6 cars will
charge at the same time. 99.73% of the time only 5 cars or
less are charging, while 95% of the time 4 cars or less are
drawing power. It becomes clear that only in extremely rare
cases all 10 cars would charge at the same time. Flexible
charging algorithms could absorb the grid impact of rare
charging scenarios by reducing the charging power in times
of necessity [3]. The grid does not have to be able to handle
the full charging power anymore.

Fig. 6. Simultanity factor of 11 kW EV-charging directly after arrival
for varying connected vehicles while considering different convidence
intervalls.

With increasing amount of EV’s in the network it becomes
implausible that all vehicles are charged at the same time.
The reserved power for EV-charging can be reduced without
inducing safety risks. Never the less, the model does not take
into account local effects such as employment at the same
company, which could increase the simultaneity of journeys
due to equal work schedules. Therefore the simultaneity-
factor should only be used for network evaluation for grids
containing 1000 or more EV’s without flexible charging
algorithms to handle network overload without considering
confidence intervalls.

IV. CROSS-INFLUENTIAL-CONNECTION

Alongside EV-charging, low voltage grids in residential
areas are influenced by regular household loads, potential
photovoltaic systems and heat pumps. All grid impacting
factors are interconnected.
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While a car is in use, the driver is not home and therefore
household loads are reduced as well as internal heat gains.
A reduction in internal heat gains in consequence leads to
an increase in heat pump power consumption.
Unblocked by clouds, sun radiation leads to an increase
in outside and building temperature, which lowers heating
demand provided by the heat pump, while at the same time
PV-output rises. Furthermore sun radiation influences light
bulb usage, which in turn reduces internal heat gains.

Most correlations are already implemented in the house-
hold model of the University of Loughborough used in
this paper [4]. Individual grid impact is calculated for each
household in one minute time intervals via a bottom up ap-
proach. The following chapters describe the implementation
of missing links and improvements on the existing model.

A. Household load adaption

The program provided by the University of Loughborough
operates under the assumption that all appliances are turned
off at midnight. Therefore, the household loads just before
and just after midnight are not consistent when considering
the average over a large quantity of houses. To overcome
this issue, some appliances are started inside their respected
cycle.
For illustration purposes the usage of an appliance is set to 40
minutes (Figure 7). Afterwards the activity is not performed
for another 60 minutes. In the first time interval of the
day a uniform random number between 0 and 1 is created.
In this example it equals 0.3. Therefore, the appliance is
in use and 30% of the activity cycle is already completed
at this point. The remaining activity length is 10 minutes.
In conclusion some appliances are used at midnight while
others are turned off and thus the average household load is
consistent when crossing midnight. In the next step, the real
individual activity length of each appliance is calculated by
the already existing algorithm of the model.

Fig. 7. Exemplary consistency assumption at midnight for a given house-
hold load.

B. Driving-Profile-Link

As previously described, it is implausible that driving
schedules have no influence on household loads. The
number of residents at home must be adapted according
to the number of used electric vehicles. Depending on the
household size and regional location, different car densities
are provided by the ”Mobility in Germany” report [1].
While in urban areas fewer cars per household exist, the
link between driving profiles and household load does grow
stronger in rural areas.

The model of the University of Loughborough already
contains information about time dependencies of people
staying home via a transition probability matrix, but it does
not specify the purpose of residential activity outside of the

house. While a vehicle is being used, at least one resident
cannot be home at the same time.
To determine if the number of residents at home is too high,
a uniform random number is created. In case the percentage
of residents at home is above the generated value the number
is reduced by one. Otherwise no adaption occurs.

C. Heat pump

While no substantial changes are necessary on the pho-
tovoltaic model, the heat demand model designed by the
University of Loughborough has to be extended. Originally
it only provides a model for conventional heating systems.
The greatest difference lies in the heat distribution. While
conventional radiators provide a very dynamic heat transfer,
heat pumps should use much slower floor heating for better
efficiency. The heat controllers and essential start values and
assumptions have to be adjusted. Previously the heat emitter
temperature was chosen at random for the first time interval.
Floor heat emitters need to be close to equilibrium so no
drastic changes in room temperature occur in the first hours
of the day, due to high heat capacity of the emitter.

During normal operation the room temperature is allowed
to change within given boundaries. Once the room tempera-
ture is below the set point, the heat pump starts working at
full capacity for maximum efficiency. The amount of power
drawn from the grid is restricted by the heat pump size, while
the heat output depends on the outside temperature as seen
in equation 1 [5]. Tol stands for the outlet temperature of the
heat pump and is set to 40 ◦C for room heating and to 60 ◦C
for warm water production. The outside temperature To is
already implemented in the existing model. In consequence,
all variables of the thermodynamic model are known.

Q̇ = (0.0008·(Tol−To)
2−0.138·(Tol−To)+7.4545)·P (1)

V. IMPORTANCE OF PROBABILITY

With the adaption of the model of the University of
Loughborough all grid loads are known. For simplification
reasons the power factor is assumed to be 1. To assess the
highest grid impact a clouded winter day is chosen without
PV-generation and full penetration of electric vehicles and
heat pumps. To show general dependencies the average
load of a very large number of households is compared to
an exemplary grid containing only 100 households (figure 8).

Fig. 8. Comparison of averages for a very large number of households
with 100 households.
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As clearly seen in the graph, grid load fluctuations of
small grids are higher than in large grids. These fluctuations
are mostly affected by vehicle charging, while heat pumps
and household loads already follow a smoother transition for
the chosen low voltage grid size. Considering a confidence
interval of 99.73% the maximum grid load increases from
2165 W for very large networks to 2961 W. Therefore
it is not recommended to calculate small grids based on
simultaneity factors alone. Confidence intervals to include
rare load accumulations should be considered as well by
using probabilistic methods.

VI. SUMMARY

This paper presented a method to create discrete driving
profiles out of report data. Main difficulties were the cre-
ation of probabilities for cars leaving and returning home
depending on the activity type. With the use of two different
methods the creation of the profiles was validated success-
fully. Furthermore a simultaneity factor for EV-charging was
introduced.

It was shown, that an increase in charging power leads
to a decrease of the simultaneity factor and thus in total
an under-proportional increase of maximum grid load. The
dependency between the number of EV contained in a grid
and confidence intervals led to the conclusion that in case of
less than 1000 connected EV’s in the network, probability
analysis is important. The same holds true when considering
all relevant loads in residential low voltage grids even after
introducing inter-dependencies.
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