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 
Abstract—This paper presents a Model Predictive Controller 

(MPC) for electrical heaters’ predictive power consumption 
including maximizing the use of local generation (e.g. solar 
power) in an intelligent building. The MPC is based on dynamic 
power price and weather forecast, considering users’ comfort 
settings to meet an optimization objective such as minimum cost 
and minimum reference temperature error. It demonstrates that 
this MPC strategy can realize load shifting, and maximize the PV 
self-consumption in the residential sector. With this demand side 
control study, it is expected that MPC strategy for Active 
Demand Side Management (ADSM) can dramatically save 
energy and improve grid reliability, when there is a high 
penetration of Renewable Energy Sources (RESs) in the power 
system.   

 
Index Terms— Active demand side management; load 

shifting; model predictive control; solar/wind power penetration  

NOMENCLATURE 

Abbreviation: 
ADSM    Active demand side management. 
CPS        Conventional power supply.  
DERs      Distributed energy resources.  
DG          Distributed generation.  
DSM       Demand side management 
DTU       Technical university of Denmark.  
MPC       Model predictive control. 
RESs       Renewable Energy Sources. 
RMI         Remote method invocation. 
RPS         Renewable power supply. 

Variables  & Parameters: 
FF         Fill factor. 
Ga      Solar irradiation. 
Hp     Prediction horizon. 
Io          Open-circuit currents. 
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 Isc    Short-circuit currents. 
 ns          Number of cells in the panel connected in series. 
 nps         Number of panels in series. 
 nsp         Number of strings in parallel.  
PC(k)    Dynamic power price signal of CPS at control step k. 
Pheat–max Maximum permitted electrical power consumption of 

heating units. 
Pmax            Maximum power point of a solar cell. 
PR(k)     Dynamic power price signal of RPS at control step k. 
Rs           Cell series resistance. 
Ta      Ambient (outdoor) temperature.  
Tc         Cell temperature.  
Ti                  Indoor air temperature. 

k
iT           Predictive indoor temperatures at each control step k 

over the prediction horizon Hp. 
Tim              Temperature of the heat accumulating layer in the 

inner walls and floor.  
Tom         

Temperature of the heat accumulating layer in the 
building envelope. 

Tref      
    Reference indoor air temperature. 

Voc          Open circuit voltage.  
VT           Junction thermal voltage. 
Ws                Wind speed. 
Фh           Energy input from the electrical heaters. 
βI            Correction coefficients for current.  
χ             Correction coefficients for voltage. 
u(k)          Optimized heat input sequence at control step k. 
us(k)          Predictive solar power at control step k. 
ΔT       Absolute temperature.  

I.  INTRODUCTION 

O MEET the rapidly increasing demand of the energy 
consumption, and to achieve a significant reduction in 
CO2 emissions, more Renewable Energy Sources (RESs), 

and other low-carbon energy sources will become major 
contributors to the future electricity system. The Danish 
government has adopted a long term goal that the Danish 
energy system (including transport) can be completely 
independent of fossil fuels by 2050 without using nuclear 
energy, based on 100% renewable energy from combinations 
of wind, biomass, solar power and wave [1], and wind power 
will cover 50% of the Danish electricity consumption in 2025 
[2].  
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Due to an increased contribution of fluctuating RESs to the 
energy system, there are many concerns about the flexibility, 
variability, non-controllability of these sources, and they have 
the impact on the ability to keep the balance between supply 
and demand. Currently, the main method to regulate the 
supply-demand imbalance is a set of supply-side generation 
reserves, known as ancillary services, which operate on 
various scales of time and frequency. The rising share of RESs 
decreases the controllability of the supply side. The rise in 
needed balancing power can be fulfilled by utilizing the 
flexibility potential in demand and Distributed Generation 
(DG). The introduction of Distributed Energy Resources 
(DERs) (e.g. household, industrial consumers and electric 
vehicles), together with the introduction of more information 
and communication technology in the electricity system 
provides interesting and novel automated Demand Side 
Management (DSM) opportunities at the end user level. The 
combination of DSM with an automatic control of the DERs 
demand can be called as Active Demand Side Management 
(ADSM) [3, 4]. ADSM can modify the demand profile to 
reduce the losses in the grid, maximize consumption while 
RESs are available, decrease congestions, and save energy [5, 
6]. 

MPC is a control algorithm that optimizes a sequence of 
manipulated variable adjustments over a prediction horizon by 
utilizing a process model to optimize forecasts of process 
behavior based on a linear or quadratic objective, which is 
subjected to equality or inequality constraints. In MPC, the 
optimization is performed repeatedly on-line. This is the 
meaning of receding horizon, and the intrinsic difference 
between MPC and the traditional optimal control. The 
limitation of this finite-horizon optimization is that, under 
ideal situations only the suboptimal solution for the global 
solution can be obtained. However, the receding horizon 
optimization can effectively incorporate the uncertainties 
incurred by model-plant mismatch, time-varying behavior and 
disturbances [7]. MPC is now recognized as a very powerful 
approach with well established theoretical foundations and 
proven capability to handle a large number of industrial 
control problems [8]. The building sector is one of the largest 
energy consumptions. Based on the vision of the future 
electricity system, building controls design becomes 
challenging since it is necessary to move beyond standard 
controls approaches and to integrate predictions of weather, 
occupancy, renewable energy availability, and dynamic power 
price signals. MPC naturally enters the picture as a control 
algorithm that can systematically incorporate all the 
aforementioned predictions to improve building thermal 
comfort, decrease peak load, and reduce energy costs [9]. 
MPC for building climate control has been investigated in 
several papers before [9]-[13], mainly with the purpose of 
increasing the energy efficiency. The potential of MPC in 
power management was investigated in [14]-[18], but the 
weather forecast information (e.g. the ambient temperature) 
was assumed to be constant in their simulation scenarios.  

The goal of our research is to implement an MPC-based  
control strategy for ADSM, using DERs’ predictive 
optimization potential to support the introduction of a large 
penetration level of renewable energy. In this paper, an MPC 
controller was implemented for load shifting in an intelligent 

office building’s heating power consumption scheme, with a 
maximization of the PV self-consumption. The term “self-
consumption” focuses on the usage of the own generated 
energy, while the energy provided by the grid remains an 
optional generator.  The original contributions of this work are: 
1) building an easy, fast to implement model for PV installed 
at an intelligent building (called PowerFlexHouse), and a 
stochastic discrete-time linear state-space model for this 
building; 2) implementing a low-complexity MPC-based 
scheme which is used to realize the load shifting for the 
heaters’ power consumption, including PV maximum self-
consumption in PowerFlexHouse; 3) integrating weather 
forecast information and dynamic power price into the MPC-
based control strategy; and 4) simulating and testing an MPC 
controller on a real power grid with high penetration of RESs. 

The remaining of this paper is organized as follows: in 
Section II, we present a test platform for intelligent, active and 
distributed power systems at the Technical University of 
Denmark (DTU), Risø campus.  How to implement a thermal 
MPC controller for the power consumption prediction in an 
intelligent building-PowerFlexHouse is provided in Section 
III, including a simple PV model for solar power prediction, a 
heat dynamic model for PowerFlexHouse’s inside temperature 
prediction, and formulated MPC objective functions. Some 
field test results will be shown in Section IV. Finally, 
conclusion is drawn in Section V, followed by the discussion 
on future research.  

II.  TEST PLATFORM DESCRIPTION 

SYSLAB is a laboratory for intelligent distributed power 
systems [19] in DTU Elektro, Risø campus. It is built around a 
small power grid with renewable (wind (11+10kW), solar 
(7kWp)) and conventional (diesel) power generation, battery 
storage, and various types of consumers (See Fig. 1). The 
whole system can be run centrally from any point on the 
network, or serve as a platform for fully decentralized control. 
All SYSLAB controller nodes run the SYSLAB software 
stack, which is a modular framework for developing 
distributed control systems for power systems. It is written in 
the Java (TM) programming language. Distributed controllers 
can control these components by using one of the supported 
types of communication, for example, the Java Remote 
Method Invocation (RMI). 

 
                           Fig. 1.  Components on SYSLAB. 
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One of the components on the SYSLAB grid is a small, 
intelligent office building, PowerFlexHouse. It contains seven 
offices, a meeting room and a kitchen. Each room is equipped 
with a motion detector, temperature sensors, light switches, 
window and door contacts and actuators. A weather station 
outside of the building supplies local environmental 
measurements of ambient temperature, wind speed, wind 
direction, and solar irradiation. The electrical load of the 
building consists of heating, lighting, air-conditioning, a hot-
water supply and various household appliances, such as a 
refrigerator and a coffee machine. The combined peak load of 
the building is close to 20kW. All individual loads in the 
building are remote-controllable from a central building 
controller. The controller software runs on a Linux-based PC. 
It is also written in Java (TM) and is based on the SYSLAB 
software stack. The controller can communicate with the 
SYSLAB grid through its own node computer (See Fig. 2). 
Information can also flow in the other direction, for example 
providing the power system supervisor controller with the 
expected near-future behavior of the building loads. 

III.  MPC FOR ADSM IN AN INTELLIGENT BUILDING’S HEATING 

POWER CONSUMPTION 

As described in Section II, the hybrid power supply system 
(SYSLAB) presented in this paper consists of two parts: a 
Conventional Power Supply (CPS), and a Renewable Power 
Supply (RPS). To use the power system efficiently, one of the 
good ways is to take the advantage of renewable power supply 
in a maximum degree. Therefore, home appliances primarily 
use RPS, and CPS is used when RPS is not enough to support 
the power required by the home appliances. We suppose that 
RPS has a low cost of power than CPS, considering its 
generation and CO2 impact, etc. We denote the dynamic 
power prices of CPS and RPS by PC and PR, respectively. In 
this paper, to realize the load shifting, we use an MPC control 
strategy to minimize the daily operational cost of heating in 
PowerFlexHouse, at the same time to ensure the maximum 
self-consumption of solar power produced at 
PowerFlexHouse, and to guarantee users’ comfort. There are 
three important components in MPC, such as the prediction 
model, the objective function, and the control law, which are 
present as following.    

A.  PV Model 

We use a single diode equivalent circuit for the PV model 
described by a simple exponential equation: 

 ( ) / 1s s Tv i R n V
sc oi I I e      

              
 (1) 

where Isc and Io are the short-circuit and open-circuit currents, 
Rs is the cell series resistance, ns is the number of cells in the 
panel connected in series, and VT represents the junction 
thermal voltage, which includes the diode quality factor, the 
Boltzmann’s constant, the temperature at standard condition  
and the charge of the electron. 

A solar cell can be characterized by the following 
fundamental parameters: the short circuit current Isc, the open 
circuit voltage Voc, the maximum power point Pmax and the fill 
factor FF, which is the ratio of the maximum power that can 
be delivered to the load and the product of Isc and Voc 

( max max max

oc sc oc sc

P V I
FF

V I V I
  ). The fill factor can be taken from 

the manufactures’ data.  Then it can be used to obtain Pmax 
( max oc scP FF V I  ) under non-standard conditions.  

Equations for Isc and Voc as a function of absolute 
temperature ΔT including temperature coefficients (βI, χ: 
correction coefficients for current and voltage) that provide 
the rate of change with respect to temperature of the PV 
performance parameters, can be expressed as:  
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                            (2) 

To complete the model it is also necessary to take into 
account the variation of the parameters with respect to 
irradiance: 

        )1000/(25 ascsc GII                                                    
(3) 

Using a four-parameters model of a single diode equivalent 
circuit, the v-i characteristics for a solar panel string 
depending on irradiance and temperature has the following 
expressions: 

 )1000//(1ln 25 ascspTspsocps GIniVnnVnv 
  
(4) 

    ( ) /( )1 ps oc s ps sv n V R i n n v
sp sci n I e         

         
            (5) 

where nps and nsp represent the number of panels in series 
and the number of strings in parallel, respectively. The 
equations (4) and (5) can be used to calculate the voltage and 
current over a string of panels [20][21]. 

The temperature and irradiance play a central role in PV 
conversion process since it affects basic electrical parameters, 
such as the voltage and the current of the PV generator. If the 
PV panels are mounted in a region with high wind potential 
(as in our case), the wind speed must also be considered 
because it has a large influence [22]. 

The model was developed in MATLAB, using the equations 
presented above, and has the solar irradiation Ga and the cell 
temperature Tc as inputs on the panel, and it sweeps the 
voltage range of the PV panel in order to calculate the output 
current and power. 

For the model input values, the measurements from the 
weather station had to be translated via additional function that 
were implemented, in order to reproduce the values on the 

    
Fig. 2.   Communication between PowerFlexHouse and SYSLAB. 
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actual PV panel conditions. The three ambient measurements: 
ambient temperature, horizontal solar irradiation and wind 
speed are fed to an additional simulation module that 
calculates the cell temperature of the PV panel and the solar 
radiation on it, as can be seen in Fig. 3.  

 

 
              Fig. 3.  Description of the PV model input values. 

 
In Fig. 4 is shown a comparison between measured and 

simulated output power of the PV panel considering the 
influence of solar irradiance and wind speed on the cell 
temperature. Comparison with experimental data, acquired by 
SCADA system and processed by MATLAB, and with the 
characteristics of the PV panels [22], provided by 
manufacturers, has shown that this PV model implemented in 
MATLAB can be an accurate simulation tool to study and 
analyze the characteristics of individual units and for the 
prediction of energy production within MPC controller and 
active loads. 

 
Fig. 4. Comparison between simulations (green) and measurements (blue) of 
the PV panel output power. 
 

B.  Simple Thermal Model for PowerFlexHouse 

The indoor temperature model of PowerFlexHouse is given 
as a stochastic discrete-time linear state-space model, which 
was directly obtained from the reference [23].  To reduce the 
complexity, the model of heat dynamics of the 
PowerFlexHouse is formulated as one large room exchanging 
heat with an ambient environment. The heat flow in 
PowerFlexHouse is modelled by a grey-box approach, using 
physical knowledge about heat transfer together with 
statistical methods to estimate model parameters. The heat 
transfer due to conduction, convection and ventilation is 
assumed linear with the temperature difference on each side of 
the medium. The estimator was Continuous Time Stochastic 
Modelling (CTSM), which is an estimation tool developed at 
the department of Informatics and Mathematical Modeling 

DTU [24]. The model’s states space equations are described 
by (6) and (7): 

 
 

            T(t + 1) = ФT(t) + ГU(t)                                  (6)  

           Output:  y(t) =C T(t) =  [1 0 0] 
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        (7)    

where  
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    

 

 
T =[Ti, Tim, Tom] is the state vector and U =[Ta, Ga, Фh]is the 

input vector to the system. Here, ( )iT t is the indoor air 

temperature; ( )imT t and ( )omT t , which are the temperature of 

heat accumulating layer in the building envelope and the 
temperature in the heat accumulating layer in the inner walls 
and floor, can not be measured. State estimator-Kalman filter 
can be used to estimate these two states; Ta is the ambient 
(outdoor) temperature; Ga is the solar radiation; and Фh is the 
energy input from the electrical heaters. Using this model, the 
predicted indoor air temperature was compared with the 
measured values (See Fig. 5). It was shown that this simple 
discrete-time linear thermal model for PowerFlexHouse is 
good enough to be pplicated in MPC. 

C.  MPC Objective Function 

In MPC the control objectives are translated into an 
optimization problem, which is formulated over a finite 
prediction horizon. The result of the optimization is a 
sequence of optimal control moves which drives the system 
states (or outputs) towards a given reference while respecting 
system constraints (such as upper and lower limits on the 
temperature) and minimizing a selected performance criterion 
(e.g. the reference temperature error, and minimum cost).  The 
goal of the MPC control strategy for the electrical space 
heaters in PowerFlexHouse is to minimize the total cost of the 
energy used in heating over a prediction horizon (Hp). At the 
same time, it should keep the indoor air temperature close to 
the given reference temperature Tref. In general, the objective 
function can be formulated as:   

 

 
    Fig. 5.  Predictive (blue) & actual measured (red) indoor air temperature.  
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and 
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Subject to: ( )ku integer [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10] in 

kW, which means the heat input that the MPC controller 
determines by using a mixed integer optimization approach. 
There are totally 10 heaters in the PowerFlexHouse. Each of 
them has a power of 1kW. Therefore the maximum permitted 
electrical power consumption of heating units is Pheat-

max=10×1kW=10kW. The available solar power at control step 
k is expressed as us(k). The minimum solar power supply 
Min(rps)=1kW. To simply the problem, PR(k) are assumed to [0], 
The above formulation provides a means of incorporating both 
the economic and user’s comfort concerns. By assigning 
different weight coefficient w in (8) to user’s comfort term, 
behaviour on trade-off between economic performance and 
user’s comfort can be studied. In (8), PC(k) is the dynamic 
power price signal of CPS obtained from the Nord Pool spot 
market [25]. Its trading horizon is 12-36 hours ahead and it is 
done for the next day’s 24 hours period. That is to say, the 
minimum prediction horizon is at least 12 hours and the actual 
maximal prediction horizon can reach 36 hours. In case 
us(k)൒min(rps), the objective function can be:  

      
1 1

( ) ( ) ( )
0 0

( )
p pH H

k
C k k s k i ref

k k

J P u u w T T
 

 

               (9);                                                                                    

in case us(k) ൏ min(rps), the objective function can be expressed 
as :   

1 1

( ) ( )
0 0

( )
p pH H

k
C k k i ref

k k

J P u w T T
 

 

                   (10) 

To find the best predicted performance over the prediction 
horizon, the mixed-integer linear programming problem is 
solved by GLPK’s (GNU Linear Programming Kit) solver 
with Java native interface [26].   

D.  MPC control law 

The main principle of MPC is to transform the control 
problem into an optimization one and solve this optimization 
problem over a prediction horizon (e.g.12-36 hours) at each 
control step (e.g. 10 minutes). The MPC controller obtains a 
measurement of the current state of the house, including the 
disturbances like the state of doors and windows, and the grid 
information, such as dynamic power price signal, available 
power and frequency signal from the test platform SYSLAB. 
It also integrates the weather forecast data (ambient 
temperature and solar irradiation, etc.) with the PV model for 
the predictive solar power, and with the prediction model for 
the house indoor temperature. All of them subjected to system 
dynamics, the objective function (linear or quadratic), 
constraints on states (e.g. user comfort could be transformed to 
a set of linear constraints.), and inputs. At each control step 
the optimization obtains a sequence of actions optimizing 

expected system behavior over the prediction horizon. But 
only the first step of the sequence of control actions is 
executed by the controller on the system until the next control 
step, after which the procedure is repeated with new process 
measurements.  (See Fig. 6). 

IV.  RESULTS  

We obtained some results from the field test on 18-20, 
February 2012. The local forecast data of the ambient 
temperature Ta and the solar irradiation Ga are provided by the 
meteorology group in DTU Wind Energy at Risø campus. Fig. 
7 shows the predictive and the actual measured outside 
temperature; and in Fig. 8 the predictive and the actual solar 
irradiation is shown during the test period. The maximum 
relative error between the actual weather measurement and the 
weather forecast data is ±5% on test. Therefore, we concluded 
that the local weather forecast data are accurate in some 
degree to be integrated into the MPC-based control strategy. 
Using the PV model described in Section III A together with 
the local weather forecast data (Fig. 7(red) & Fig. 8(red)), we 
can obtain the predictive solar power for PowerFlexHouse PV 
from 8:00 18th to 0:00 20th, February 2012 (See Fig. 9). It was 
observed that the weather on 18th, February 2012 was bad and 
there was not solar power to be consumed by heaters. Only 
during the period of 9:00 to 16:00 on 19th, Feb 2012, there was 
available solar power supply. In this paper, PV electricity has 
been used as a local generator, and the concept of self-
consumption is meaningful, only when the local generation is 
available.  

 

 
Fig. 7.   Predictive (red) and actual measured outside temperature. 

           Fig. 6.  Basic principle of MPC for building.  
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At 8:00 (18th, February 2012) the MPC control algorithm 

was running on the SYSLAB platform and it provided the 
optimized profile of the predictive power consumption in the 
next approximately 16 hours for the PowerFlexHouse’s 
heaters, as shown in Fig. 10.  Fig. 11 demonstrates the 
predictive indoor air temperature in the next 16 hours 
according to the optimized switch schedule (the same as in 
Fig. 10). At 13:00 (18th, February 2012), the MPC produced 
the results shown in Fig. 12. It presents the optimized profile 
of the predictive total power consumption in the next almost 
35 hours for the PowerFlexHouse’s heaters. At this moment, 
the prediction horizon could reach 35 hours, because the Nord 
Pool spot market at 13:00 (on the same day) provided next 
day’s 24 hours’ price information for the users. Since the solar 
power has a high priority to be used, the green area in Fig. 12 
is the solar power consumption, which would be consumed by 
heaters from 9:00 to 16:00 on 19th, Feb 2012. The predictive 
indoor air temperature in the next 35 hours is shown in Fig. 
13, according to the optimized switch schedule for heaters 
supplied with RPS and CPS, shown in Fig. 12. It was observed 
that the MPC-based controller almost worked within the low 
price period, including when there is solar power, and it was 
able to shift the load and reduce the total cost of operating 
electrical heaters to meet certain indoor temperature 

requirements. It is also shown that preheating during the night 
is a possible way to achieve energy savings.  

 

 
 

 
 
 
  

 
 

 
          Fig. 8.  Predictive (red) and actual measured solar irradiation.  

 
Fig. 9.  Predictive solar power. 

 
Fig. 11. Predictive indoor air temperature (red) according to the 
optimized heaters’ power consumption (black) in the next 16 hours. 

 
Fig. 10.  Optimized heaters’ power consumption (black) & dynamic 
power price (red) in the next 16 hours. 

 
Fig. 12.  Optimized heaters’ power consumption (black) & dynamic  
power price (red) in the next 35 hours. 
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After analyzing the data of Nord Pool in 2010, it is 

concluded that there is certain predictability in the occurrence 
of peak load periods during the day in Denmark, and this 
predictability is reflected in the hourly spot price. The peak 
load periods and high spot prices occur mainly in the same 
hours of the day (morning 8:00-11:00 and afternoon 17:00-
20:00) and the low spot prices take place in the deep of night 
[27]. In the Nordic system at night-hours, there is a large 
production by wind turbine. This is correlated with the 
dynamic power price, which is much lower during the period 
from 21:00 to 7:00. According to [28], it is concluded that the 
spot price, generally decreases when the wind power 
penetration in the power system increases, that is to say, the 
Nordic Electricity spot prices reflect the amount of wind 
power in the system. Fig. 10 and Fig. 12 illustrate that heaters 
are always switched on late at night and MPC control strategy 
can achieve energy savings by shifting load from on-peak to 
off-peak period. At the same time, it shows that MPC control 
strategy can be investigated on ADSM in this intelligent 
house, which is used to stabilize fluctuations in the power grid 
with a high penetration of wind power or other renewable 
energy, and it can maximize the use of local PV generation.  

V.  CONCLUSION AND FUTURE RESEARCH 

In order to enable more use of renewable energy in the 
future power system, ADSM should be established to 
encourage consumers to improve energy efficiency, reduce 
energy cost, change the time of usage, or promote the use of 
different energy sources. From the control systems view, 
smart grids are essentially predictive optimal control problems, 
which can be formulated as optimizing the cost, the use of the 
storage, the use of the wind/PV source, and to match the 
production with the consumption in a predictive horizon.  

Simulations and experimental results have shown the 
effectiveness of the MPC-based control scheme. The 
predictive optimal problem, which is set up a residential 
sector, can be naturally modeled with discrete time steps, 
because balance settlement and markets work within discrete 
periods. Complex models cannot be readily used for control 
purposes, since the computation time for the optimal load 

scheduling should be low. Meanwhile in real conditions, 
efficiency of the predictive schedule depends on accuracy of 
the forecasts. 

To improve the operation of various energy resources, 
operation efficiency of building energy, and loads should be 
coordinated and optimized. The predictive behavior of power 
consumption for residential sectors shows that MPC-based 
strategies are feasible for active DSM in a distributed power 
system with high renewable energy penetration. Integrating 
dynamic power prices and the weather forecast data, it 
demonstrates that MPC control strategies are able to shift the 
electrical load to periods with low prices. The end users can 
avoid high electricity price charge at peak time, and the power 
grid can benefit from load control.  

The future work will focus on the other different 
optimization methods for predictive controllers and the 
computation time for their optimal scheduling. Moreover, we 
need to analyze the effect of the predictive horizon length on 
the performance in the MPC strategies, and the robustness of 
these controllers against uncertainty in measurements and 
forecasts. At the same time, the different home appliances, 
such as a water heater, can be used for maximum PV self-
consumption. 
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