Determining the Maximum Feasible Amount of Photovoltaics in the European Transmission Grid Under Optimal PV Utilization Stanislav Cherevatskiy Eckehard Tröster 2nd International Workshop on Integration of Solar Power into Power Systems November 13, 2012 Lisbon, Portugal #### Introduction #### **Background:** - Significant growth of the number of photovoltaic systems in recent years - Introduction of incentives for PV usage in many countries - Grid parity can be reached even in regions with less favorable irradiation conditions - Further decline of PV system prices and increase of electricity prices anticipated # **Balancing of PV electricity** Balancing on the distribution system level # **Balancing of PV electricity** Balancing on the distribution system level #### Introduction #### In this study: - Consideration of a large PV capacity addition in the future decades in Europe - How much demand in Europe can be supplied by PV? - How much curtailment would PV suffer due to its massive expansion and bottlenecks associated with the transmission grid? - What is the role of storage? # **Methodology: Grid Model** # **Energynautics' European Transmission Grid Model:** - Validated European network model in DIgSILENT PowerFactory - Consists of 400+ aggregated lines (≥ 220 kV) and 200+ aggregated nodes - Contains both HVAC and HVDC lines - Here conducting DC Optimal Power Flow (OPF) simulations - Grid fixed at predicted 2020 state # Methodology #### **Approach steps:** - Dimensioning and distribution of minimum PV capacity in Europe - Projections concerning PV capacity growth in the future - Dimensioning and placement of different amounts of storage - Calculations of a complete year in several scenarios related to the amount of available storage capacity # Methodology: PV dimensioning & placement - Minimum PV capacity amount: cover complete demand in the system on a clear summer weekend day at noon (base case) - Load projections for 2050 as a target year - PV capacity distribution through OPF simulation in accordance with regionspecific irradiation conditions respecting grid's thermal limits | Country | Installed PV, % | Demand, % | |----------------|-----------------|-----------| | Austria | 1.6 | 1.9 | | Belgium | 1.3 | 2.7 | | Bulgaria | 1.1 | 1.1 | | Czech Republic | 0.9 | 2.3 | | Denmark | 0.7 | 0.9 | | Estonia | 0.0 | 0.3 | | Finland | 2.1 | 2.1 | | France | 13.4 | 14.1 | | Germany | 11.8 | 12.7 | | Great Britain | 9.0 | 9.5 | | Greece | 2.7 | 2.4 | | Hungary | 2.8 | 1.5 | | Ireland | 1.0 | 0.9 | | Italy | 12.9 | 11.7 | | Latvia | 0.6 | 0.3 | | Lithuania | 0.0 | 0.4 | | Luxembourg | 0.0 | 0.2 | | Netherlands | 5.4 | 3.2 | | Norway | 1.3 | 2.5 | | Poland | 6.4 | 5.6 | | Portugal | 2.5 | 2.1 | | Romania | 1.9 | 2.4 | | Slovakia | 0.9 | 1.0 | | Slovenia | 0.0 | 0.4 | | Spain | 13.1 | 12.9 | | Sweden | 4.6 | 3.7 | | Switzerland | 2.1 | 1.3 | | Total | 100 | 100 | Base case: 770 GWp PV # **Methodology: Calculation Scenarios** - Calculation of a complete year in hourly resolution - Hourly demand and irradiation data for all nodes - Output presents PV energy used, stored and curtailed due to grid or storage restrictions - Storage (short-term only) placement and dimensioning according to curtailed PV energy on a day in spring #### Scenarios: | Installed PV in GWp | Total storage capacity in Europe in GWh | | | |-----------------------|---|------------|------------| | | Scenario 1 | Scenario 2 | Scenario 3 | | 770; 1155; 1540; 1925 | none | 290 | 1540 | ## **Calculation results: Scenario 1: no storage** - Up until 1155 GWp of installed PV no significant excess of PV in the system - Role of the grid clearly visible - At about 1700 GWp of PV in the system amount curtailed due to excess PV overtakes - 1925 GWp installed PV in Europe would result in a loss of 25% of available PV energy # Calculation results: Scenario 2: 290 GWh storage - Storage dimensioned for 770 GWp PV in Europe - Storage fixes curtailed PV caused by grid restrictions and excess PV generation in relation to load - Curtailed PV energy is reduced from 25% (scenario 1) to 23% for 1925 GWp installed PV ### Calculation results: Scenario 3: 1540 GWh storage - Storage dimensioned for 1155 GWp PV in Europe - Storage capacity equivalent to a full capacity of about 31 million electric vehicles - 12% curtailed PV with 1925 GWp in the system supplying 38% of demand - Appropriate grid enforcement would contribute to further reduction of curtailment #### **Calculation results: full load hours** • Larger storage in scenario 3 considerably raises the number of PV full load hours #### **Conclusions** - Consideration of grid restrictions and irradiation conditions leads to welldistributed PV placement close to demand - PV curtailment can be reduced significantly if distributed storage is dimensioned and placed strategically according to accruing curtailment - 30% to 40% of annual demand in Europe can be covered by PV with low to moderate curtailment and feasible amount of storage - Appropriate grid enforcement would further reduce the amount of curtailed PV energy - Any further expansion of PV capacity is likely to carry a high economic burden owing to the disproportionately high amount of required storage capacity # Thank you for your attention! Stanislav Cherevatskiy Energynautics GmbH Mühlstraße 51 Langen, Germany Phone: +49 (0)6151 785-81 07 s.cherevatskiy@energynautics.com