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Abstract—Growing trends in generating power from dis-
tributed PhotoVoltaic (PV) systems has accommodated more
and more PV systems within load pockets in distribution grid.
This high penetration has brought about new challenges such
as voltage profile violation, reverse load flow and etc. A few
remedies have been imposed by grid codes such as reactive
power contribution of PV systems and active power curtail-
ment. This study applies two analytical methods from control
science to find the possibility of controllability among the PV
systems in a distribution grid for voltage profile control at
specific set-points through reactive power regulation and active
power curtailment. For this purpose, the voltage sensitivity
matrix is used as the steady-state gain of the multi-variable
system. The first method is Relative Gain Array (RGA), in
which RGA of the voltage sensitivity matrix is utilized as a
quantitative measure to address controllability and the level
of voltage control interaction among PV systems. The second
method is Condition Number (CN), in which Singular Value
Decomposition (SVD) of the voltage sensitivity matrix is used
as a mathematical measure to indicate the voltage control
directionality among PV systems. Two radial test distribution
grids with different feeder R/X ratio, overhead line and
underground cable, which consist of five PV systems, are used
to calculate load flow and, in turn, voltage sensitivity matrix.
The results demonstrate that decentralized voltage control to
specific set-points is basically impossible in the both systems.
It is also shown that voltage control directionality of the both
systems is increased by reactive power regulation compared to
active power curtailing.
Keyword: Photovoltaic, Voltage sensitivity matrix, RGA, SVD.

I. INTRODUCTION

Growing trends in PhotoVoltaic (PV) system installations

due to encouraging feed-in-tariffs and long-term incentives

have led to high penetration of PV systems in distribution

grids. In Germany, for instance, there are currently 20 GW

installed PV systems, of which 80% have been connected

in low voltage grids [1]. Due to recent drop in costs of

PV systems, especially PV panel technologies, grid-parity

is not anymore unimaginable and will in near future come

close to reality [2]–[4]. High penetration of PV systems

without incentives is more likely to be interesting in different

countries and markets rather than limited countries. For

example, Italy and Spain are following Germany.

This high penetration of PV systems has also raised new

challenges in the distribution grid such as voltage rise.

Violation of voltage profile in some regions in Germany has

led to stopping PV installation by utilities. To contrive a

way to solve the unwanted problems associated with high

participation of PV systems, reactive power contribution of

PV systems has been proposed in recently under-codified

standards, e.g. German Grid Codes [5]. Several approaches

have been proposed for reactive power support [6]–[9]. One

of these approaches is voltage control at the connection

point of PV to grid. In the previous research [10], it was

shown that this method is sensitive to adjusting set-points to

the extent that improper set-points may lead to interaction

among PV systems in the same vicinity. In [11], determinant

of voltage sensitivity matrix from load flow calculation has

been employed to study the impact of the R/X ratio on

the effectiveness of using active and reactive power for

regulating voltage profile. In [9], sensitivity matrix has also

been used to show the difference between a system with

overhead line and underground cable. However, the level

of interaction and directionality among the PV systems

regarding voltage control to specific set-points has not been

addressed in the previous literature.

The aim of this paper is to address the possibility of con-

trollability among PV systems for voltage profile regulation

to specific set-points via two analytical control methods. For

this investigation, the voltage sensitivity matrix, which can

be derived via the load flow calculation, is used as the steady-

state gain of the understudy system. The first method is Rela-

tive Gain Array (RGA) [12], [13] that is employed to analyze

and evaluate the controllability and level of voltage control

interaction among the PV systems. The second method is

Condition Number (CN), in which mathematical measure of

directionality is provided by Singular Value Decomposition

(SVD). This method is a useful way to quantify how the

range of possible gains of a multi-variable process varies

for an input direction [13], [14]. Wide (or narrow) range

of possible gains for a process implies large (or small)

directionality.

Sub-matrices of the voltage sensitivity matrix indicate the

sensitivity of the bus voltages and angels to the variation

of active and reactive power at buses. The RGA and CN

of the voltage sensitivity sub-matrices, in turn, indicate the

degree of the interaction and directionality, respectively. The

relation of feeder R/X ratio and the distance between buses in

a distribution grid for voltage control is of concern. Applying

the aforementioned methods provides an analytical view that

how the voltage control interaction and directionality among

PV systems in a distribution grid would be affected by the

distance and R/X variation.

Two radial test distribution grids with different feeder R/X

ratio, overhead line and underground cable, are employed as



the test platform. MATLAB environment is used to calculate

the voltage sensitivity matrix and investigate it further via

RGA and CN. Derived results, in conclusion, demonstrate

decentralized voltage control to specific set-points through

the PV systems in the distribution grid is fundamentally

impossible due to the high level voltage control interaction

and directionality among the PV systems.

In the following, a general overview of the voltage sensi-

tivity will be given in section 2, basic of RGA and condition

number are presented in section 3 and section 4 respectively,

section 5 presents the simulation platform and section 6 deals

with the results and finally the conclusion comes at section

7.

II. VOLTAGE SENSITIVITY MATRIX

Voltage Sensitivity matrix is a measure to quantify the

sensitivity of bus voltages (|V|) and bus angles (θ ) with

respect to injected active and reactive power for each bus

except slack bus. Sensitivity matrix is obtained through

partial derivative of load flow equations, g(|V|,θ ), as follows

[15]:
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Voltage sensitivity matrix consists of four sub-matrices that

denote the partial derivatives of bus voltage magnitude and

angle with respect to active and reactive power. Due to

importance of the voltage magnitude regulation by variation

of active and reactive power, sub matrices that are related to

variation of voltage magnitude, SV
|V |,P and SV

|V |,Q, are of more

interest and concern in this study. Each element of these sub

matrices, e.g. SV
i j, is interpreted as the variation that would

happen in a voltage at bus i if the active power (or reactive

power) at bus j changed 1 p.u. Voltage sensitivity matrix

represents the open loop gain of the system which is later

used as the steady state transfer function of the system to

conduct some investigation.

Equation (1) represents a linearized form of the system

equations. Keeping this in perspective, it follows from (1)

that voltage magnitude variation corresponds to active and

reactive power variation and consequently in order to keep

the voltage magnitude theoretically constant, following is

deducted which can be also employed as a measure to

determine the degree of active-reactive power dependency.

∆Q =−SV
|V |,Q

−1
SV
|V |,P∆P = J∆P. (2)

Equation (2) is used later to compare the relation between

the reactive power and active power while the voltage profile

is perfectly controlled.

III. RGA METHOD

Although the RGA was basically introduced by Britsol

[12] for pairing the input and output variables in a decentral-

ized control system, it has also been exploited as a general

measure of controllability [13], [14]. The relative gain array

has been addressed in many literatures and is frequently

employed as a quantitative measure of controllability and

control loop interaction in decentralized control design. The

RGA is originally formulated for steady state analysis and

later it was extended to include the dynamics [13]. In this

study, the RGA concept is used to analyze the voltage

sensitivity matrix, which is calculated from system algebraic

equations and therefore does not comprise dynamic.

The proposed interaction measure through RGA indicates

how the apparent transfer function between manipulated or

input variable (ui) and controlled or output variable (y j)

is affected by control of other controlled variables. This

measure is shown by λi j and is described by the ratio of

the transfer function between a given manipulated variable

and controlled variable while all other loops are open, and

the transfer function between the same variables while all

other outputs are closed as follows:

λi j =

(

∂yi

∂u j

)

| uk 6= jconstant
(

∂yi

∂u j

)

| yk 6= jconstant
(3)

In other words, the RGA is the ratio of the open loop gain

between two variables to the closed loop gain of the same

variables while other outputs are perfectly controlled. For a

MIMO system with G(0) as the steady sate transfer function,

the RGA is attained as follows:

Λ(G(0)) = G(0)×
(

G(0)−1
)T

(4)

Where × denotes element-by-element multiplication.

Equation (3) demonstrates that the open loop gain between

y j and ui changes by the factor λ
−1
i j while the rest of

loops are closed by integral feedback control. This implies

that the pairing should be preferred for RGAs that are as

close to unity as possible. λi j=1 implies that there is no

interaction with other control loops. Intuitively, decentralized

control requires an RGA matrix close to identity [13]. In a

decentralized control, the MIMO process works as several

independent SISO sub-plants. If RGA elements are greater

than one, the decoupling or inverse-based controller can

be used to decouple interactions. However, systems with

large RGA elements are basically hard to control owing

to big interactions and input uncertainties; by doing so,

inverse based controller should be prevented since it is not

robust. Pairing with negative RGA elements must be avoided

because those lead to integral instability.

Sub-matrices of the voltage sensitivity matrix in (1) are

steady-state gain of the system and by doing so the RGA of

SV
|V |,P and SV

|V |,Q are given as follows:

Λ(SV
|V |,Q) = SV

|V |,P ×

(

(

SV
|V |,P

)

−1
)T

(5)

Λ(SV
|V |,Q) = SV

|V |,Q ×

(

(

SV
|V |,Q

)

−1
)T

(6)

The RGA of SV
|V |,P in (5) can be used to study the possibility

of controllability and interaction among voltage controllers

of PV systems via power curtailing in order to regulate the

voltage of buses to specific set-points. The RGA of SV
|V |,Q

in (6) is used to investigate the possibility of controllability

and interaction among voltage controllers of PV systems to
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Figure 1. Test distribution grid.

regulate voltage of buses to specific set-points via regulating

reactive power.

To sum up, in RGA method, the voltage sensitivity matrix

must first be derived. Then, RGA of sub-matrices SV
|V |,P

and SV
|V |,Q are calculated. In the next step RGA values

are evaluated. RGA values close to one demonstrate a

decentralized system. If the RGA values are big but less

than 5, the decoupling compensators can be used to make

the system decentralized. However, large RGA values, more

than 5, correspond to controllability problems because of big

interactions and input uncertainties [13].

IV. CN METHOD

Another measure to quantify the level of interaction in

multi-variable systems is condition number. CN of a system

is defined as the ratio between maximum and minimum

singular values of the system, which are computed using

SVD [13], [14]:

γ(G(0)) =
σ̄(G(0))

σ(G(0))
(7)

A process with large CN implies high directionality and

is called to be ill-conditioned [13]. The steady state gain

of MIMO process varies between σ(G(0)) and σ̄(G(0)).
Wide range of possible gains for a MIMO system indicates

large directionality. Such a plant is often considered sensitive

to uncertainty that, in turn, will lead to a poor robust

performance [13]. Moreover, a large CN results in control

problem. A large CN may be brought about by a small

singular value that is generally undesirable.

In a nutshell, in CN method, the voltage sensitivity matrix

must first be derived. Then, SVD of sub-matrices SV
|V |,P and

SV
|V |,Q are computed and consequently CN is calculated. CN

larger than 50 demonstrates controllability problems [13].

V. PLATFORM OF THE SIMULATION

Radial grid in Fig. 1, which consists of five houses

connected through a step down transformer to a medium

voltage grid, is employed as a test grid in this paper. In

this study, it is assumed that all the houses have been

equipped with PV systems. In this grid both overhead lines

and underground cables are taken into consideration in order

to study the effect of the R/X ratio. The parameters of the

test radial grid have been given in Table I [9].

In the load flow calculation, the slack bus is naturally

excluded from sensitivity matrix. Moreover, in the sensitivity

matrix, rows and columns corresponding to buses that have

no PV systems are also neglected.

Table I
RADIAL TEST GRID PARAMETERS.

Grid impedance 1.4e-4 +1.4e-4i p.u.

Transformer impedance 0.0043 + 0.0067i p.u.

Over head line impedance per km 0.0516 + 0.0375i p.u.

Underground cable impedance per km 0.0400 + 0.0102i p.u.

Rated total net load 20 kW

Base Voltage 400 V

Base Power 20 kW
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Figure 2. The sensitivity spectrum of the diagonal elements of SV
|V |,P and

SV
|V |,Q for overhead lines.

VI. RESULTS

A. Sensitivity matrix characteristic

Figs. 2 and 3 show the spectrum of the diagonal ele-

ments of SV
|V |,P and SV

|V |,Q for overhead lines and cables,

respectively. As it was expected the sensitivity to reactive

power in overhead line is noticeably bigger than underground

cable. Nevertheless, in case of underground cable, it can

be seen that at the beginning of the feeder, sensitivity to

reactive power is higher compared to active power, but as

approaching to the end of feeder it gets the other way around.

Therefore, even though resistive part of the underground

cable is dominant, controlling voltage profile by regulating

reactive power at the beginning of the feeder, seems to be

more effective.

B. Voltage regulation active-reactive power dependency

Irrespective of the operating point and R/X ratio, (2)

yields an upper triangular matrix. Nevertheless, the diagonal

elements and first row of the matrix, which are dominant

elements, vary significantly between the overhead line and

underground cable. Figs. 4 and 5 depict the spectrum of

those elements.

The characteristics of the matrix is summarized as follows:

• The first entry in the diagonal and the first row are

common and corresponds to the first bus, which can

only see the impedance of the grid, and by doing so it

gets same value in both systems with overhead line and

underground cable.
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Figure 3. The sensitivity spectrum of the diagonal elements of SV
|V |,P

and

SV
|V |,Q for underground cable.

• Diagonal entries, except the first entry, are almost

similar; first row entries, except the first entry, are also

almost similar.

• The diagonal entries are almost equal to the feeder R/X

ratio in both systems, overhead line and underground

cable.

• The absolute difference between corresponding diago-

nal and first row entries, except the common entry, is

almost equal to the absolute value of the common entry.

• Large elements in case of underground cables, which

is in conjunction with large R/X ratio, implies that for

an identical change in active power of buses, required

reactive power to keep voltage profile constant varies

largely. In other words, the required reactive power

to keep voltage differences equal to zero (∆V = 0),
is proportional to the feeder R/X ratio. By doing so,

for feeders with R/X ratio more than one the required

reactive power change (∆Q) at each bus would be

greater than the active power difference (∆P) in the

same bus.

• Depending upon the R/X ratio value, the sign of the

first row entries except the first entry changes. In order

to study the effect of the k=R/X ratio, the total amount

of the overhead line impedance is taken into account,

and its R/X ratio is varied. It is observed that for k

smaller than 0.58 the sign of the first row entries is

negative. Therefore, for small R/X ratio, if the active

power difference (∆P) in all buses are in one direction,

the reactive power difference (∆Q) at all buses will be

in one direction as well. However, for large k values the

sign of the first row entries are positive and opposite of

the diagonal entries which means the reactive power

variation at bus one is always in contrary with other

buses.

Eq. (2) is used to calculate the required reactive power

adjustment to compensate the voltage profile fluctuation

owing to the variation of active power. Considering the initial
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Figure 4. Spectrum of diagonal and first row elements of active-reactive
power dependency for overhead line.
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Figure 5. Spectrum of diagonal elements and first row of active-reactive
power dependency for underground cable.

operating point at P0 = 0 and Q0 = 0 gives

∆P = P−P0 = P

∆Q = Q−Q0 = Q

P = JQ (8)

Consequently, the needed power factors for the PV con-

nected buses are calculated as follows:

PF =
P

√

P2 +((∑J′)P)2
(9)

Where PF is a vector consisting of power factors at each

PV installed bus. Fig. 6 depicts the power factor of each bus

for differen R/X ratio while it is assumed that the total net

power at each bus has been changed 1 p.u. (P=1 p.u.), as

can be seen the required power factor varies drastically by

increasing R/X ratio. It boils down to this fact that required

reactive power to compensate voltage fluctuation depends

upon R/X ratio.
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Figure 6. Required power factor for each PV system for different k=R/X
ratio and ∆P = 1p.u.

C. RGA

Subsequent to the previous section upshot, if adequate

reactive power can be provided by PV systems, this question

is raised whether it is possible to regulate the voltage of

each bus with installed PV system to a fixed set-point

through reactive power regulation or not. In this section

and following, the interaction among PV systems in a radial

distribution grid is quantified by RGA concept to address

the possibility of controllability concerning voltage profile

regulation to specific set-points.

The RGA of the SV
|V |,P and SV

|V |,Q look like a block

tridiagonal matrix which positive elements are only located

on the diagonal and elements on the upper diagonal and

on the lower diagonal are negative. According to the RGA

pairing rule, therefore, the elements on the diagonal must be

paired. This block tridiagonal shape of the RGA of voltage

sensitivity sub-matrices indicate that open loop gain of the

system, which is the sensitivity matrix, is changed with

positive sign on the diagonal and with negative sign on the

upper diagonal and lower diagonal. Moreover, since the other

elements of the RGA are almost zero, open loop gain of the

system on these positions are changed with infinite factor

which means these loops are considerably affected by other

loops. Figs. 7 and 8 depict the diagonal entries spectrum of

RGA of SV
|V |,P and SV

|V |,Q for overhead lines and cables while

all buses are on full production, respectively. It can be seen

by moving towards end of the feeder, except the last bus,

the level of interaction is increasing. Since the last bus at

the end of feeder is affected only by one previous neighbor

bus, the level of interaction drops at this bus.

Concerning overhead line, Figs. 9 and 10 demonstrate

maximum RGA of SV
|V |,P and SV

|V |,Q for different net load

levels and different line distances between buses. One sees

that the interaction level decreases by increasing the distance

between the buses, or in turn by increasing the impedance.

Moreover, it can be seen that the maximum RGA of SV
|V |,P

declines by shifting total net load from consumption to

production. Similar results, not shown here, are derived for

under ground cable.

Figs. 11 and 12 show the impact of the lagging and leading
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Figure 7. The RGA spectrum of the diagonal elements of SV
|V |,P

and SV
|V |,Q

for overhead line.

power factor on the maximum RGA of SV
|V |,P and SV

|V |,Q
for different loading conditions, while it is assumed that

overhead line segments are 70 m. As can be seen the power

factor has relatively very small effect on the maximum RGA

of SV
|V |,P while the maximum RGA of SV

|V |,Q slightly increases

by lagging power factor and decreases by leading power

factor. The performance of the system with underground

cable, not shown here, is analogues with overhead line.

The results of the maximum RGA for different k=R/X

ratio are shown in Figs. 13 and 14. It is assumed that the

distance between buses are 70 m and power factor is unity. It

is obvious that maximum RGA of SV
|V |,Q increases for larger

k values. It is, therefore, deducted that increasing R/X ratio

would boost the interaction level among voltage controllers

of PV systems regarding reactive power regulation. However,

it can be seen in Fig. 13 that the maximum RGA of SV
|V |,P

declines by large k values.

Based on the depicted results, the positive elements of the

RGA of SV
|V |,Q are always much bigger than one irrespective

of the R/X ratio, total net load and power factor. It can

be, therefore, concluded that it is not possible to have

decentralized voltage control in order to regulate voltage to

a specific set-point at each bus even for small R/X ratio that

technically adequate reactive power can be produced by PV

systems [13]. Since the RGA of SV
|V |,P are much bigger than

one, decentralized control based on the power curtailing is

not also possible.

Furthermore, the results demonstrate that maximum pos-

itive elements of RGA of the voltage sensitivity matrix are

large, more than 5, by doing so using decoupling controllers,

in order to make a decentralized system, can fundamentally

lead to control problems due to sensitivity to inputs [13].

Thus, inverse-based controllers must be avoided.

D. Condition number

At production net load level with unity power factor, CN

of SV
|V |,P and SV

|V |,Q for overhead line are γ
OHL
P =44.2 and

γ
OHL
Q =72.1, and for underground cable are γ

UGC
P =50.8 and

γ
UGC
Q =197.2. These CNs denote that sensitivity matrix is
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Figure 8. The RGA spectrum of the diagonal elements of SV
|V |,P

and SV
|V |,Q

underground cable line.
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and different distances between buses, overhead line.

ill-conditioned and the severe case is for SV
|V |,Q. Figs. 15
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different power factors, overhead line.
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and different power factors, overhead line.
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Figure 13. Maximum RGA entry of SV
|V |,P for different net load levels and

different k=R/X ratios.

and 16 illustrate the spectrum of the singular values of

SV
|V |,P and SV

|V |,Q , respectively. As can be seen the sensitivity

matrix in both systems suffers from high directionality.
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and different k=R/X ratios.
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Figure 15. The singular values of SV
|V |,P and SV

|V |,Q for overhead line.

Furthermore, smallest singular value for SV
|V |,Q in the system

with the underground cable is smaller than the system with

overhead line that implies more directionality and more

control problems. These results are in conjunction with RGA

results.

Figs. 17 and 18 demonstrate the condition numbers of

SV
|V |,P and SV

|V |,Q for different R/X ratio and different total

net load levels. Regarding SV
|V |,Q the more increasing k

the further CN goes that is along with the RGA results.

Analogous with the RGA results, large R/X ratio results in

relatively smaller CN for SV
|V |,P. Changing power factor and

the distance between buses yield similar results, not shown

here, for CN as the RGA results in the previous section.

VII. CONCLUSION

This paper applies two analytical control methods, namely

Relative Gain Array and Condition Number, to voltage

sensitivity matrix in order to find the possibility of the

controllability. RGA and CN are used to quantify the level

of interaction and directionality among PV systems in dis-

tribution grids regarding voltage control, respectively. The
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Figure 16. The singular values of SV
|V |,P and SV

|V |,Q underground cable.
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Figure 17. Condition number of SV
|V |,P for different net load levels and

different k=R/X ratios.
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Figure 18. Condition number of SV
|V |,Q for different net load levels and

different k=R/X ratios.

sensitivity matrix is used as the steady-state gain of the

system in this study. Moreover, the characteristic of the sen-

sitivity matrix is employed to show the level of dependency



of reactive power to active power for voltage control. The

results show that decentralized voltage control to specific

set-points through reactive power regulation or active power

curtailing is not possible due to large RGA elements and

large CN of voltage sensitivity matrix. It is, furthermore,

shown that using decoupling controllers to make system

decentralized must also be avoided on the grounds that the

RGA elements of the voltage sensitivity matrix are too big,

larger than 5, that would result in poor control performance.

ACKNOWLEDGMENT

This project has been funded by SETS Erasmus Mundus

Joint Doctorate and Smooth PV. The authors would like to

express their gratitude towards all partner institutions within

the programme as well as the European Commission for their

support.

REFERENCES

[1] J. C. Boeme and et al, “Overview of german grid issues and retrofit of
photovoltaic power plants in germany for the prevention of frequency
stability problems in abnormal system conditions of the ENTSO-E
region continental europe,” in 1st International Workshop on Integra-

tion of Solar Power into Power Systems, (Aarhus, Denmark), pp. 3–8,
Oct. 2011.

[2] D. Verma, O. Midtgard, and T. Satre, “Review of photovoltaic status
in a european (EU) perspective,” in 2011 37th IEEE Photovoltaic

Specialists Conference (PVSC), pp. 003292 –003297, June 2011.
[3] U. Schwabe and P. Jansson, “Utility-interconnected photovoltaic sys-

tems reaching grid parity in new jersey,” in 2010 IEEE Power and

Energy Society General Meeting, pp. 1 –5, July 2010.
[4] J. H. Wohlgemuth, D. W. Cunningham, R. F. Clark, J. P. Posbic, J. M.

Zahler, P. Garvison, D. E. Carlson, and M. Gleaton, “Reaching grid
parity using BP solar crystalline silicon technology,” in 33rd IEEE

Photovoltaic Specialists Conference, 2008. PVSC ’08, pp. 1 –4, May
2008.

[5] “Verband der elektrotechnik elektronik Informationstechnike.V.
(VDN) (2010). erzeugungsanlagen am niederspannungsnetz technis-
che mindestanforderungen für anschluss und parallelbetrieb von erzeu-
gungsanlagen am niederspannungsnetz. draft of 07-08-2010. berlin.”

[6] M. Braun, “Reactive power supply by distributed generators,” in 2008

IEEE Power and Energy Society General Meeting - Conversion and

Delivery of Electrical Energy in the 21st Century, pp. 1 –8, July 2008.
[7] P. Sulc, K. Turitsyn, S. Backhaus, and M. Chertkov, “Options for

control of reactive power by distributed photovoltaic generators,”
arXiv:1008.0878, Aug. 2010. Proceedings of the IEEE , vol.99, no.6,
pp.1063-1073, June 2011.

[8] R. Tonkoski, L. Lopes, and T. EL-Fouly, “Droop-based active power
curtailment for overvoltage prevention in grid connected PV inverters,”
in 2010 IEEE International Symposium on Industrial Electronics
(ISIE), pp. 2388 –2393, July 2010.

[9] E. Demirok, D. Sera, R. Teodorescu, P. Rodriguez, and U. Borup,
“Evaluation of the voltage support strategies for the low voltage grid
connected PV generators,” in 2010 IEEE Energy Conversion Congress
and Exposition (ECCE), pp. 710 –717, Sept. 2010.

[10] A. Samadi, M. Ghandhari, and L. Söder, “Reactive power dynamic
assessment of a PV system in a distribution grid,” Energy Procedia,
vol. 20, pp. 98–107, 2012.

[11] R. Tonkoski and L. Lopes, “Voltage regulation in radial distribution
feeders with high penetration of photovoltaic,” in IEEE Energy 2030

Conference, 2008. ENERGY 2008, pp. 1 –7, Nov. 2008.
[12] E. Bristol, “On a new measure of interaction for multivariable process

control,” IEEE Transactions on Automatic Control, vol. 11, pp. 133 –
134, Jan. 1966.

[13] S. Skogestad and I. Postlethwaite, Multivariable Feedback Control:

Analysis and Design. Wiley-Interscience, 2 ed., Nov. 2005.
[14] S. Skogestad and K. Havre, “The use of RGA and condition number

as robustness measures,” Computers & Chemical Engineering, vol. 20,
Supplement 2, no. 0, pp. S1005–S1010, 1996.

[15] H. Saadat, Power System Analysis Third Edition. PSA Publishing,
THIRD EDITION ed., June 2010.


	5a_4_SIW12-78_Jägemann_120928.pdf
	5a_5_SIW12-67_Jägemann_120928.pdf

