

Smooth PV Project

Considerations on the Modeling of Photovoltaic Systems for Grid Impact Studies

V. Ćuk, P.F. Ribeiro, J.F.G. Cobben, W.L. Kling, Eindhoven University of Technology F.R. Isleifsson, H.W. Bindner Risø, Technical University of Denmark N. Martensen Energynautics GmbH A. Samadi, and L. Söder KTH Royal Institute of Technology

1st International Workshop on Integration of Solar Power into Power Systems

24 October 2011, Aarhus, Denmark

Introduction – Smooth PV project

European project "Smart Modelling of Optimal Integration of High Penetration of PV" (Smooth PV) http://www.smooth-pv.info/

Participants:

- Energynautics GmbH
- University of Cologne
- KTH Royal Institute of Technology
- Risø, Technical University of Denmark
- Eindhoven University of Technology

Motivation:

Technical and economic impact of high PV penetration in the distribution network and in the overall European power system

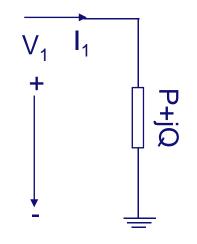
Objective of the paper

Overview of the literature about PV system modeling

Overview of existing models for different types of studies:

- Power flow
- Stability
- Short-circuit
- Transients
- Harmonics

Generalized initial approach for the modeling process


Power flow studies

PQ model – constant active and reactive power

Voltage control – PU node, Q depends on U (new grid codes)

U and Q control – DU node

Aggregation - arithmetical

Short-circuit studies

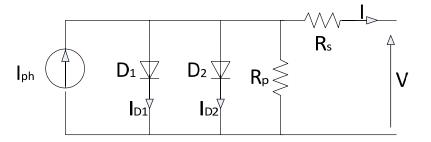
Previously – immediate disconnection during a grid fault

New grid codes – fault ride through required (for certain dips)

1. Synchronous generator model; not very accurate, reactive current limited to In (independent of fault distance)

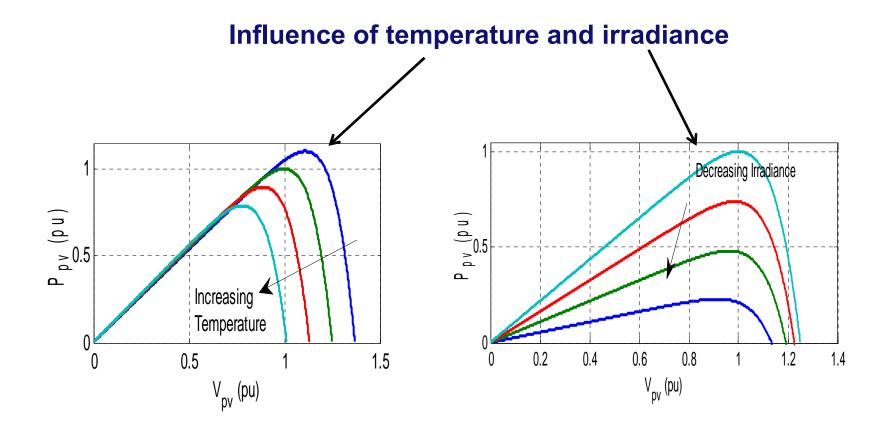
2. Dynamical simulation – very accurate, parameter set large

3. Iterative approach – non-linear inverter model, difficulty of implementation between 1 and 2


Aggregation: No simplified models available

Models of PV panels (1)

Single diode model


Double diode model

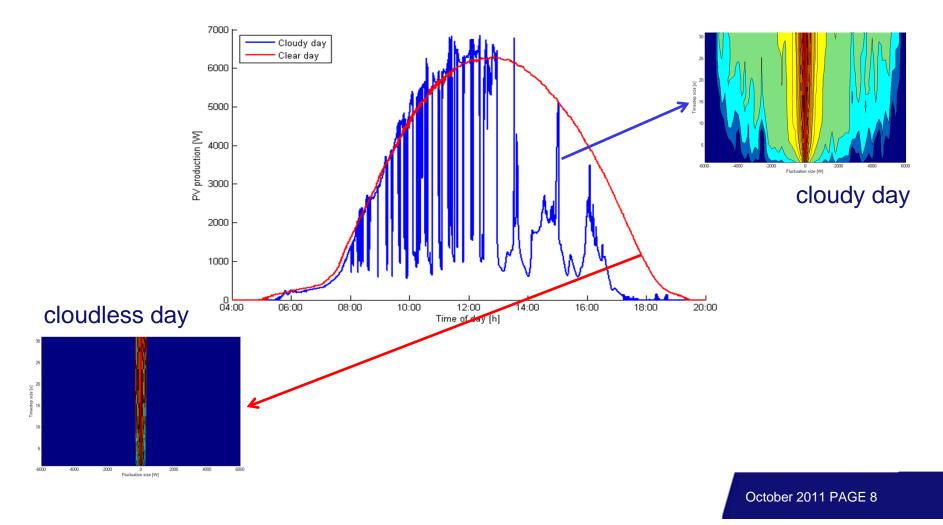
Less accurate Less complicated More complicated More accurate

Models of PV panels (2)

Voltage stability studies (1)

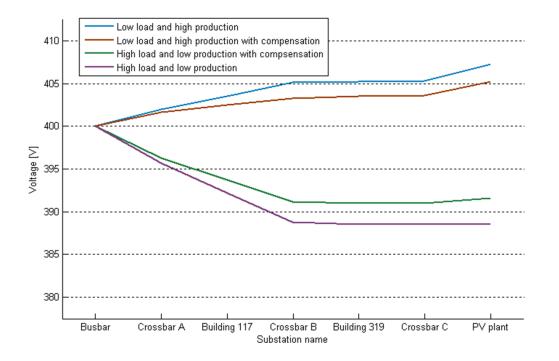
Rapid power output changes can lead to rapid voltage level changes

It is important to model PV input and real time consumption changes


Outputs: size of fluctuations and distribution of voltage levels

Weather conditions important – not only temperature and irradiance, but also cloud formations

No aggregated models available


Voltage stability studies (2)

P production – 2 days with different cloud coverage

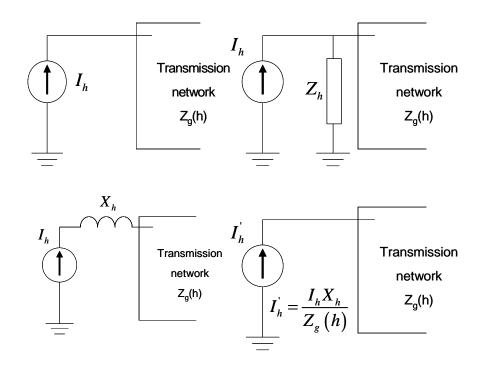
Voltage stability studies (3)

Voltage levels along the feeder – different loads, with/without reactive power compensation

Harmonic interaction studies (1)

Time domain modeling:

- Differential equations
- Detailed model with controls


Pros/Cons:

- Very good accuracy
- Good coverage of various conditions
- Difficult to implement (large number of parameters)

Harmonic interaction studies (2)

Frequency domain modeling:

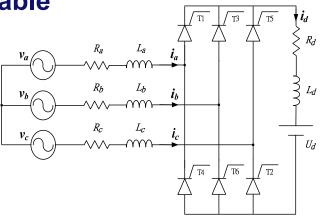
- Current source method simple, least accurate
- Power flow method
 more complicated and
 more accurate
- Iterative harmonic analysis most complicated and most accurate

Harmonic interaction studies (3)

- Harmonic currents relatively low
- Frequency dependent impedance of the system
- Impedance of inverters important

Aggregation with summation coefficients

Phase angle diversity - the sum is smaller than arithmetical


$$I_{SUM} = \sqrt[\beta]{\sum_{i} I_i^\beta}$$

Transient studies

Time domain models:

- Very good accuracy
- Difficult to implement (large number of parameters)

New grid codes - fault ride through even for small units No simplified or aggregated models available

Applications and limitations presented

Different studies emphasize and/or neglect different details

New grid codes change the behavior of converters (e.g. fault ride through, voltage regulation)

More work needed on the aggregation of a large number of units